

Technilogical Advancements in Ethylene Cracking Sample Probes

Standards

Certification

Education & Training

Publishing

Conferences & Exhibits

Presenter

 Over 25 years of experience in the Analytical Industry including 5 years working exclusively on analyzer integration project in the Middle East. The last 10 years have been with Universal Analyzers, an AMETEK company.

Distillation Probes – Where are they needed?

- Distillation probes also known as Transfer Line Samplers, Reflux Samplers, PyGas or Pyrolysis Probes
- Ideal for hot, wet, or dirty process gases
- Current Applications:
 - Ethylene Cracking Furnaces Light Hydrocarbon Measurement
 - Decoke Operations CO Measurement
- Possible Applications:
 - Fluidized Catalytic Cracking Units (FCCU) -Standard CEMS Measurements
 - Syngas Light Hydrocarbon Measurement

Distillation Probes – What are they designed for?

- Process control
 - Measure Ethylene and Propylene ratio after cracking
 - Know when Decoke is complete
 - Overcracking results in coke formation. Undercracking results in reduction of production.

Case Study – Middle East Chemical Plant Ethylene Furnace

Assumption - Ethylene / Propylene ratio number used in the control of the cracking furnace would be unaffected by the pyrolysis gas sampler.

Results - the Ethylene (C2=) to Propylene (C3=) ratio is clearly affected by the outlet temperature of the sample and use of the outlet sample temperature should be considered in the control algorithm

\$\$\$\$\$ - This shows that change of temperature can have an impact on concentration that will effect process control and yield.

effect process control and yield.				~~~		
RATE	POUNDS	ANNUAL PRODUCTION (LBS)				
235,000	2,000	470,000,000	- ETHYLENE			
COMPONENT	SAMPLE TEMP	CONCENTRATION	ANNUAL PRODUCTION (LBS)	VALUE (USD)		
Ethylene	70F	25.30%	118,910,000	\$35,673,000		
Ethylene	60F	26.50%	124,550,000	\$37,365,000		
Ethylene	50F	27.60%	129,720,000	\$38,916,000		
Propylene	70F	27.30%	128,310,000	\$47,474,700		
Propylene	60F	28.60%	134,420,000	\$49,735,400		
Propylene	50F	29.60%	139,120,000	\$51,474,400		

SMKTM and USC® M-coil technology for gas feed: these technologies, designed to achieve very large capacities, enable selectivity

Typical PYGAS Probes – Common Problems (Sample Temp)

- Ethylene and Propylene levels measured throughout a four day period.
- Existing probe could not maintain outlet set point temperature
- Readings varied with ambient temperature
- This graph is 4 day trend-spike due to heavies with 4 to 5 hour duration.
- Do you have a trend showing analysis varying with ambient condition?

Typical PYGAS Probes – Common Problems (Sample Temp)

- Sample outlet temperature not controlled well
 - Analyzer measurements vary greatly with sample gas temperature
 - Ideal Gas Law dictates if pressure is constant, a decrease in temperature will cause the concentration to go up

- Testing shows how sample outlet temperature affects the measured Ethylene and Propylene
 - Testing was done with a GC over four days
 - As the outlet temperature of the Model 1221 was lowered the analyzer value for Ethylene and Propylene increased
 - Testing should be completed to determine if your current measurements are faulty.

Universal Analyzers can develop optimum temperature profile for you.

Typical PYGAS Probes – Common Problems

- Difficult to service probes while installed
- Probe functionality cannot be monitored
- Insufficient cooling capacity causing water carry over
 - Small sample contact surface area
 - Poor heat transfer to separator
 - Improper probe insulation
 - Unable to expel condensate
 - External components added decreasing response time
- Probes plug
 - Inefficient filtration of particulate
- Mesh Pad filtration is maintenance intensive

Modification in Field:
Membrane filter used because of inadequate cooling. This adds lag time to analysis and creates maintenance item.

Smith Analytical – PyGas Sample Conditioner (1221)

- Developed because of need to improve this important measurement
- Proven Technology
- Large Installed Base Worldwide
- Proven Solutions
- New Generation Developed with Universal Analyzers Patent Pending EFSID 28697688

- TraceBoost
- Disc Extraction
- Disc Arrangement
- Control Options
- Control Features

1221 SOLUTION

CRACKING FURNANCE ANALYSIS TREND WITH 1221 PROBE

- No water carryover
- Stable outlet temperature with change in ambient conditions.
- This allows operations to optimize process.
 Overcracking results in coke formation.
 Undercracking results in reduction of production.

Model 1221 – How does it work?

- The separation chamber is cooled to 40-65 °F (4-18 °C) via a Vortex tube
- Hot, wet sample passes through the chilled chamber
- Distillation discs in chamber cool the sample
- Water and heavy hydrocarbons condense
- They drop back into process stream process commonly called "Reflux Action"

Model 1221 – (Cooling Capabilities)

TraceBoost™ Technology

- Technology developed by Control Southeast Inc. for optimizing heat transfer and temperature profile.
- Transfers uniform cooling via conductive heat transfer
- Causes more even distribution of cooling
- Helps minimize Vortex air consumption
- No risk of cooling media leaking into process

Model 1221 – (Cooling Capabilities)

Insulation

 Encapsulated thermal insulation is used to prevent ambient air temperature bias

 The robust PVC based coating on the cooling chamber provides a barrier to protect the thermal insulation and prevents damage during maintenance or collateral activities

Model 1221 – (Maintenance)

- Distillation Discs Assembly
 - Easy to maintain
 - Cable Lift Design can remove internals, clean, and reinsert into probe
 - Easy to install
 - Eyelet allows easy installation onto process valve.
 - Internals can be removed without removing entire probe
 - Safety Solution entire probe pipe does not have to be removed for cleaning of internals
 - Options steam clean port for internals
 - Wire prevents discs from rotating
 - Ensures tortuous path through discs

Typical Air Consumption (SCMH)

		Duty Cycle						
		5.00%	10.00 %	20.00	30.00	40.00%	50.00%	
Instrument Air Pressure [barg]	5.5	2.8	5.6	11.2	16.8	22.4	28.1	
	6.2	3.1	6.2	12.4	18.6	24.8	31.0	
	6.9	3.4	6.8	13.6	20.4	27.2	34	
	7.6	3.7	10.2	14.8	22.2	29.6	36.9	
	8.6	4.1	8.3	16.6	24.8	33.1	41.4	

Recommended Instrument Air Pressure 6.9 – 8.6 barg
Typical Duty Cycle 8 – 10%
Sample Inlet Temperature 121°C, Flow Rate 5L/min

Air Consumption 5.1 – 6.8 SCMH

THANK YOU FOR YOUR TIME

Questions?