

Advantages of Using Raman

**Spectroscopy to Monitor Key** 

**Gasoline Blending Parameters** 

Standards
Certification
Education & Training
Publishing

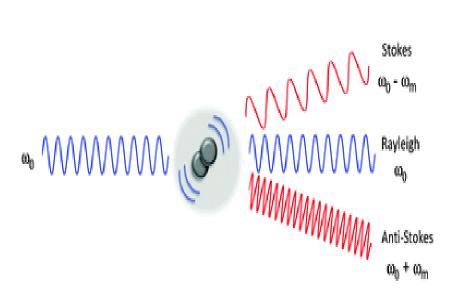
Conferences & Exhibits

### Presenter: Lee Smith, PhD



- President Process Instruments, Inc.
- Located in Salt Lake City, UT, USA
- > 100 On-line Raman Installations since 2000
- Certifications: IEC Ex, ATEX, ETL

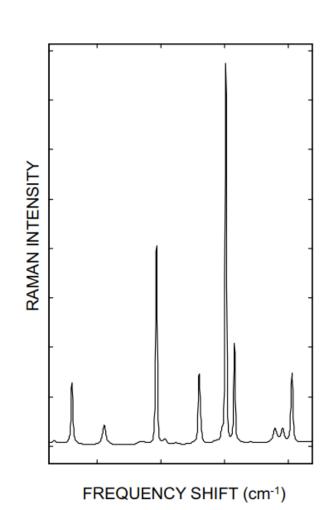



# **Topics**



- Raman Scattering Effect and its Interpretation
- Raman's Advantages Within the Refinery
- Typical On-line Setup and Implementation
- Raman Modeling Best Practices
- Refinery Applications and Savings

#### Raman Effect





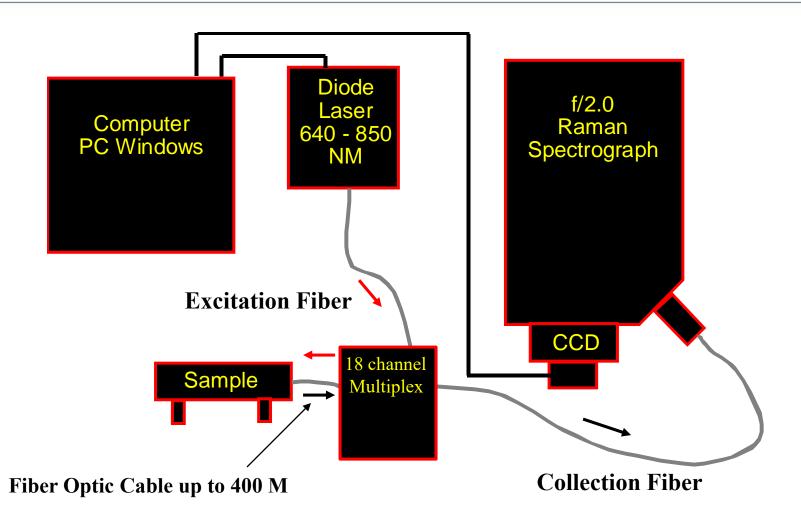

- **❖Same Vibrational Modes as MID-IR**
- **❖Light Scattering Technology Whereas Infrared Is Absorption**
- **❖** Different Selection Rules Than IR
- **Excellent Spectral Resolution**
- **❖** Minimum Component Overlap
- **❖** Maximum Component Specificity

## Interpretation of Raman Spectra



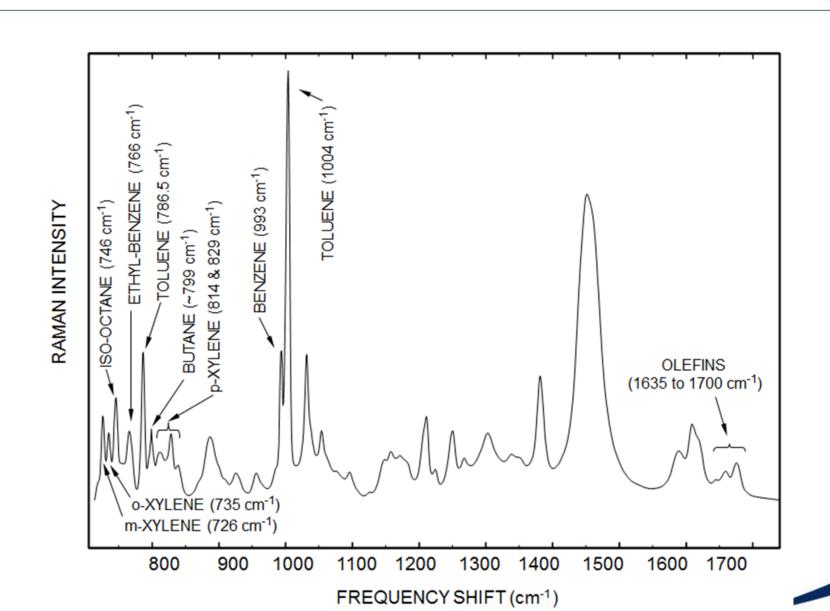


- **❖**Peak Frequency Shifts Yield Sample Composition
- **Peak Intensities Yield Concentrations**
- Chemometric Data Analysis for Sample Parameters
- **Requires Laboratory Data**



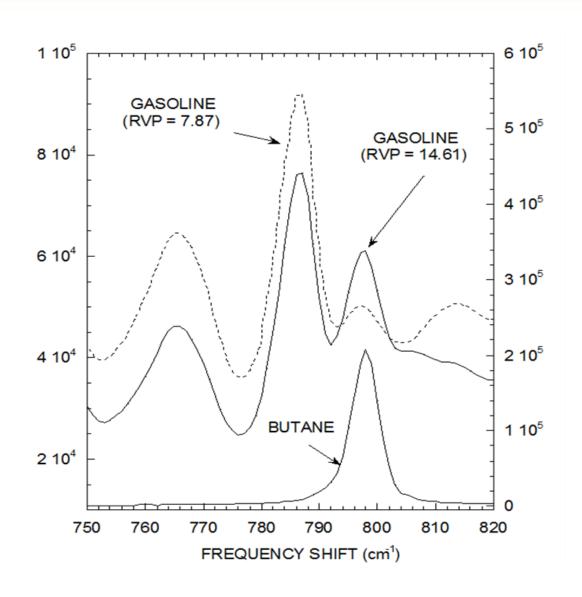

## **Advantages of Raman Scattering**

- No Interference From H<sub>2</sub>O or Process Temp. Changes
  - Most Other Spectroscopic Methods Require Extensive Sample Conditioning
- Insert Probe Directly Into Process Stream
- Multiplex Capable Over Optical Fibers Up To 400 m
- Resolution Provides Minimum Component Overlap
- Chemometric Models Transfer Easily, Fewer Samples


## **Typical On-Line Raman Setup**

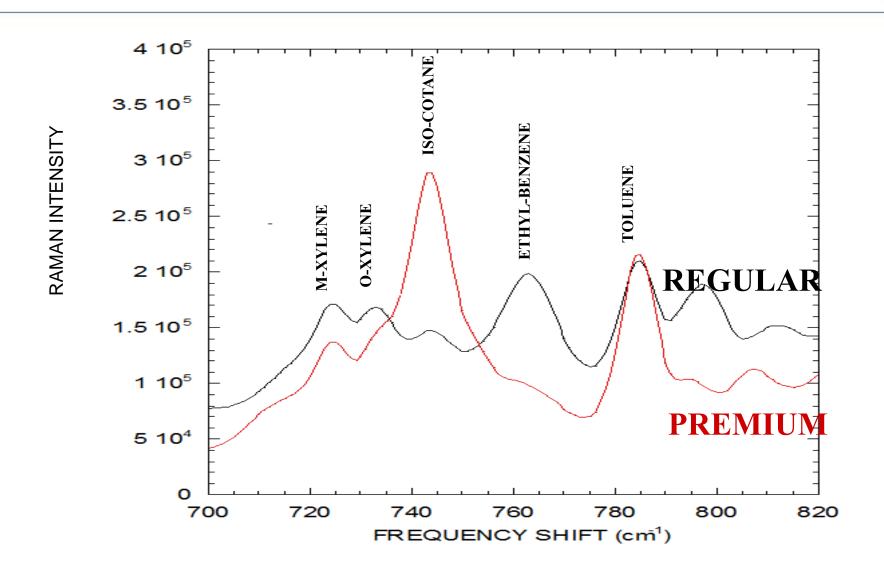





# ISA

## Raman Gasoline Spectrum






#### **RVP Determination Via Raman**





#### **Octane Determination Via Raman**





# Raman Models With Few Samples

| PARAMETER    | RANGE        | r^2    | SECV  | SAMPLES |
|--------------|--------------|--------|-------|---------|
| RON          | 87 - 98      | 0.998  | 0.175 | 42      |
| MON          | 80 - 88.2    | 0.995  | 0.174 | 42      |
| ROAD         | 83.9 - 92.95 | 0.998  | 0.14  | 42      |
| RVP          | 6.38 - 9.88  | 0.997  | 0.06  | 45      |
| IBP          | 85 – 99      | 0.87   | 1.36  | 44      |
| 10%          | 117 – 151    | 0.99   | 1.04  | 44      |
| 50%          | 195 - 235    | 0.95   | 1.58  | 44      |
| 90%          | 304 - 357    | 0.96   | 1.27  | 42      |
| FBP          | 397 - 429    | 0.93   | 2.03  | 42      |
| E200         | 29.9 - 48.4  | 0.991  | 0.472 | 46      |
| E300         | 66.3 - 90.5  | 0.99   | 0.448 | 46      |
| API          | 54.7 - 64.3  | 0.996  | 0.134 | 44      |
| BENZENE      | 0.22 - 1.41  | 0.9991 | 0.008 | 45      |
| AROMATICS    | 15.1 - 36.4  | 0.99   | 0.56  | 46      |
| T(V/L)       | 128 - 161    | 0.98   | 1.36  | 47      |
| DRIVEABILITY | 1032 - 1254  | 0.98   | 7.16  | 47      |
| SULFUR ppm   | 3 - 22       | 0.73   | 2.1   | 47      |
| OLEFINS      | 5.2 - 21.9   | 0.91   | 1.31  | 45      |
| TOLUENE      | 1.52 - 17.44 | 0.999  | 0.127 | 48      |
|              |              |        |       |         |



## **Analyzer Precision Over 3 Months**

| PARAMETER    | MEAN   | STANDARD DEV. |
|--------------|--------|---------------|
| RVP          | 9.23   | 0.019         |
| RON          | 92.51  | 0.029         |
| MON          | 82.51  | 0.015         |
| ROAD         | 87.49  | 0.025         |
| T ( V/L )    | 138.38 | 0.17          |
| IBP          | 96.24  | 0.097         |
| T 10%        | 126.75 | 0.22          |
| T 50%        | 206.71 | 0.27          |
| T 90%        | 326.15 | 0.18          |
| FBP          | 405.80 | 0.32          |
| E200         | 46.48  | 0.10          |
| E300         | 81.52  | 0.073         |
| API          | 55.96  | 0.048         |
| BENZENE      | 2.23   | 0.0042        |
| AROMATIC     | 35.32  | 0.026         |
| OLEFIN       | 7.63   | 0.080         |
| DRIVEABILITY | 1137   | 1.22          |



### Raman's Insensitivity To Process Temperatures

#### **Chemometric Model Predictions**

|      | Temp = 0 C | Temp = 22 C | Temp = 48 C |  |  |  |
|------|------------|-------------|-------------|--|--|--|
| RON  | 93.78      | 93.72       | 93.68       |  |  |  |
| MON  | 82.99      | 83.04       | 82.97       |  |  |  |
| ROAD | 88.31      | 88.26       | 88.21       |  |  |  |
| RVP  | 8.17       | 8.14        | 8.13        |  |  |  |
| IBP  | 98.23      | 99.26       | 100.30      |  |  |  |
| 10%  | 125.16     | 124.12      | 123.57      |  |  |  |
| 50%  | 208.33     | 207.19      | 207.08      |  |  |  |
| 90%  | 315.76     | 316.37      | 316.52      |  |  |  |
| FBP  | 397.08     | 396.36      | 396.49      |  |  |  |
| DRIV | 1131.3     | 1121.1      | 1109.5      |  |  |  |
| E200 | 48.74      | 49.04       | 50.01       |  |  |  |
| E300 | 84.84      | 85.12       | 85.67       |  |  |  |
| DENS | 0.751      | 0.750       | 0.747       |  |  |  |
| BENZ | 1.93       | 1.90        | 1.87        |  |  |  |
| AROM | 28.86      | 28.25       | 27.91       |  |  |  |
| TVL  | 131.60     | 128.82      | 129.53      |  |  |  |
| OLEF | 10.03      | 10.03       | 9.98        |  |  |  |

# Gasoline Is Not Beer...So Do Not Pour It Like Beer.





**Grab Sample Collection Techniques To Preserve Octane and RVP** 

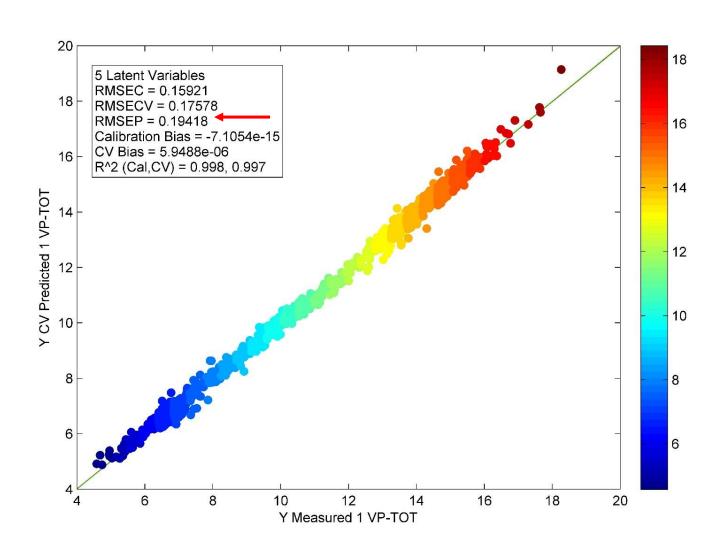
**Collect Under Pressure in Sample bomb** 

If Using Glass Bottle, Use Amber Glass and Chill Bottle First

**Ideally Chill Grab Sample** 

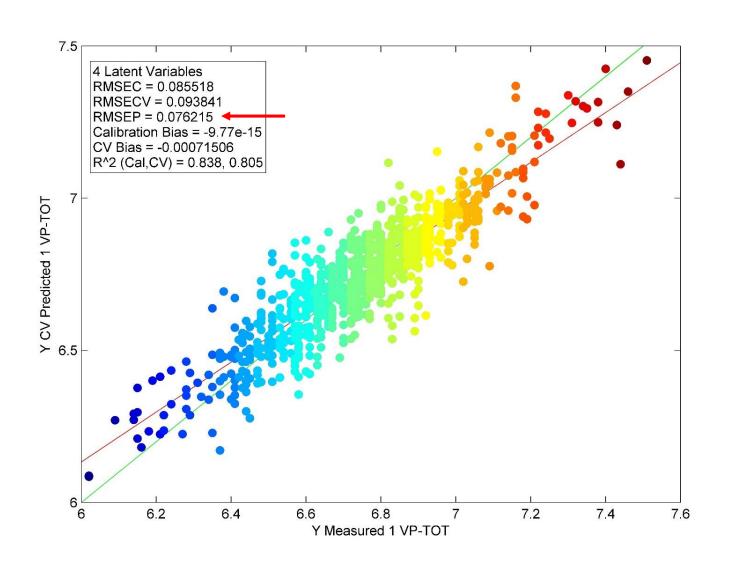
Fill Bottle From Bottom Up

**Tightly Seal Bottle** 


# **Modeling Best Practices**

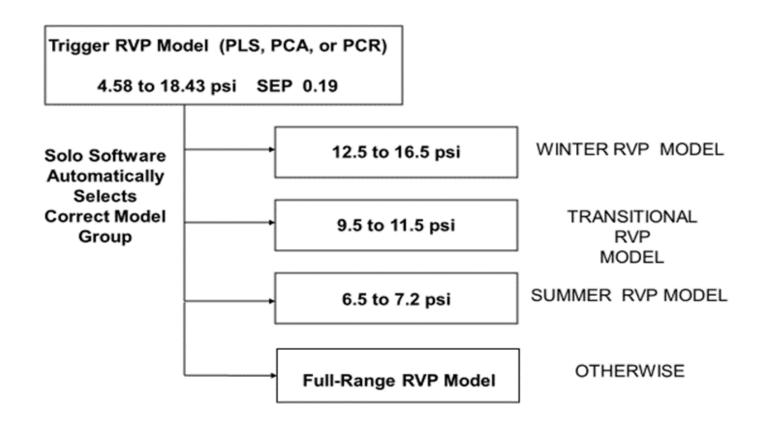


- Background correction, area normalization of all spectra, and mean centering
- Venetian blind cross-validation
- Generalized least squares weighting (GLSW Filtering)
- Outliers selected from leverage vs. studentized residuals
- Conservative choice of latent variables determined from standard error of cross-validation (SECV) plot
- Validation with an independent set of data


# **RVP: Full Range Measured vs Predicted**






# **RVP: Low Range Predicted vs Measured**







### **Hierarchical RVP Model Tree**





### One Year Case Study – U.S. West Coast, Refinery

- Blend Property Control Optimization Via Raman Refinery Capacity - 240,000 bpd
  - \$6MM RVP giveaway savings 2014 2015.
  - Targeting 0.1 psi from spec
  - Consistently <0.1 Octane giveaway in summer grades</li>
  - \$3MM Octane giveaway savings



## **Raman Refinery Applications**

#### **Monitor/Control Blender**

24/7 Monitoring

Reduce Octane and RVP Give-Away

**Eliminate Off-Spec Blends** 

**Reduce Reprocessing** 

**Reduce Tankage Requirements** 

Reduce On-Line Equipment and Maintenance Needs

#### **Monitor Component Streams**

Alky, Reformer, Hydrotreater, FCC, Ethanol Alkylation Acid, MSAT, LPG, Etc.

Monitor Diesel, Kerosene, Jet Fuel, Crude Units

**Customer Documented Payback Periods 1 to 3 Months**