

Naphtha Steam Cracking (NSC) Unit Optimization

The Use of Robust On-line Optical Spectroscopy for the Real-time Optimization of Steam-cracking Furnace Operation

Standards

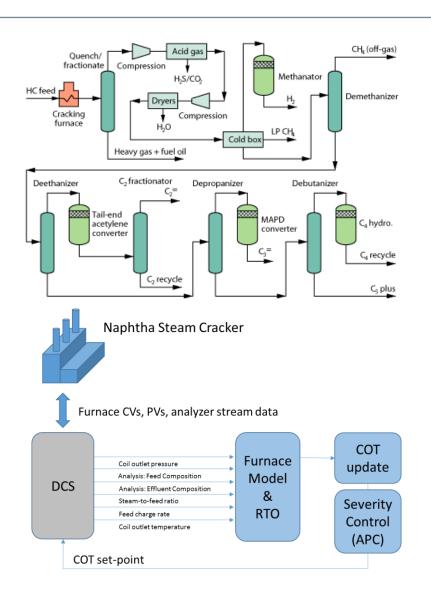
Certification

Education & Training

Publishing

Conferences & Exhibits

Naphtha Steam Cracking (NSC) Unit Optimization



Ву

Michael B. Simpson, Allan Rilling, Jesper Yip Industrial Automation Measurement and Analytics ABB

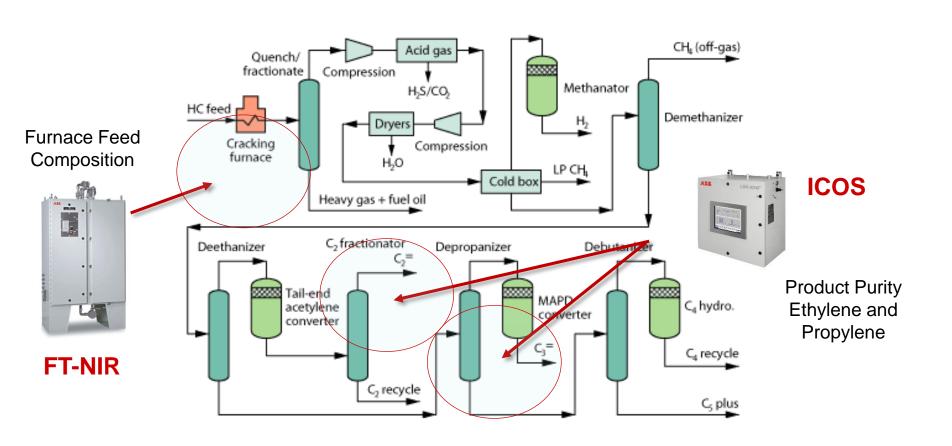
Steam cracker operational constraints

Steam-Cracking Optimisation

- for managing real-time fast analysis of steam cracker naphtha feed
- PIONA, %Distillation and C-number breakdown analyses
- Enables efficient use of SPYRO feed-forward optimiser ment of COT control
- Minimise coil coking, side-products
- Correctly manage cracking severity to match downstream volumetric flow (compressor) constraints
- Maintain optimal P/E ratios in response to feed quality variation
- Ensure safe and efficient acetylene removal in final product olefins

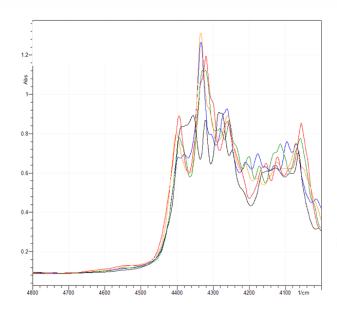
Control and optimization of the steam cracker furnace

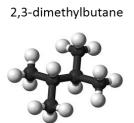
Optimization

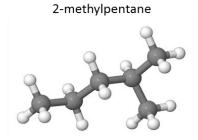

- Optimization is normally based on the use of a real-time kinetic furnace model (SPRYO, PYPS+ or similar) for yield estimation
- This is used by the RTO to calculate, and update, the COT (coil outlet temperature) set-point point based on inputs such as cracking targets and feed quality it aims to achieve constant constant cracking conditions over the furnace run-length
- It will include yield predictions (to help manage downstream volumetric constraints) and an an updated run-time estimate for the furnace

COT set-point calculation in RTO

- The RTO updates as required (frequently during transitions) and sets the COT and makes yield yield estimations using SPYRO which require accurate and timely naphtha feed qualities as as input.
- Key role of on-line FT-NIR which is able to measure multiple naphtha feed qualities dynamically during transitions.


Process optical spectroscopy





Can NIR distinguish naphtha isomers?

C6 isomers

3-methylpentane

n-hexane

methylcyclopentane

		Reference va	lues wt/wt%		
0	10	20	30	40	50
0	-	-	-	-	
5	*				
10	$\overline{}$			R ² = 0.9996	
<u>5</u> 15			v = 1	.0006x - 0.025	1
25		$-\!\!/-$			
§ 25					
\$ 30					
30					
35	+ 2-me	thylpentane			
40					
45					

Compounds	Range (wt/wt %)	R²	Uncertainty (wt/wt%)	Repeatability (wt/wt %)
2,3-Dimethylbutane	1 - 15	0.9992	0.13	0.006
2-Methylpentane	1 - 40	0.9996	0.28	0.045
3-Methylpentane	1 - 40	0.9988	0.46	0.118
n-Hexane	1 - 30	0.9979	0.43	0.019
Methyl-cyclopentane	0.5 - 26	0.9997	0.16	0.098

Is it feasible to measure low levels?

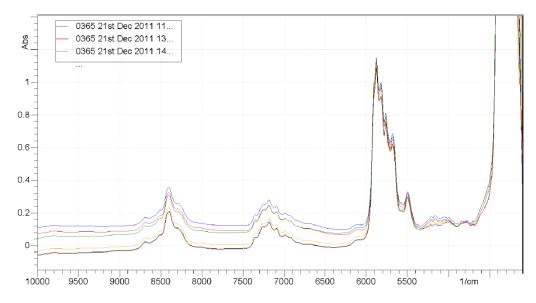


Figure 2: Typical NIR spectra of the LPG samples collected at COP Seal Sands.

Table 1: Performance data for the isopentane in LPG calibration.

Property	Range %	Factors	Uncertainty % (1 x σ)	R ²	Repeatability % (1 x σ)
isopentane	0 - 7.64	7	0.09	0.997	0.05

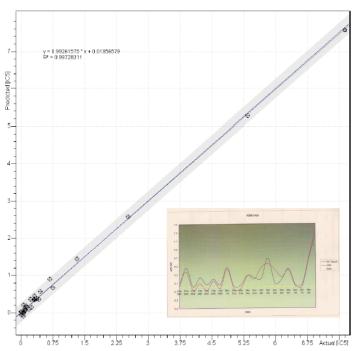
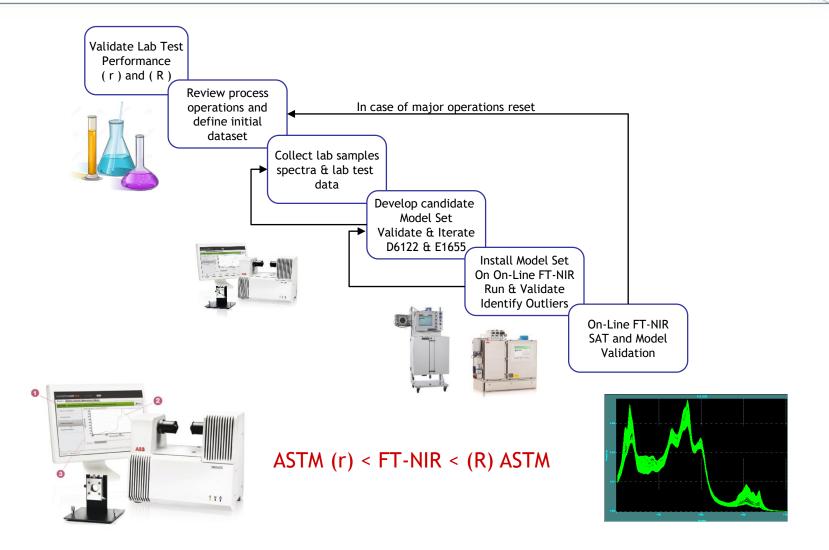


Figure 4: Actual vs. Predicted isopentane concentration in LPG samples collected at COP Seal Sands.

Component	Min	Normal	Max	Range	Units
Methane	0	0.2629	1.7	-	WT%
Ethane	2.7	5.2449	14.9		WT%
Propane	26.4	40.2375	57.6		WT%
iso-Butane	10	13.8973	17.7	-	WT%
n-Butane	19.2	39.9566	50	0- 50	WT%
iso-Pentane	0	0.3836	9.3	0 - 2	WT%
n-Pentane	0	0.0172	1.8	-	WT%

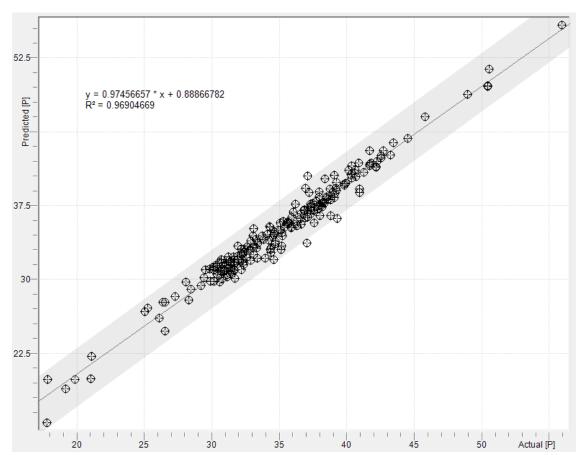
FT-NIR vs PGC for PIONA analysis

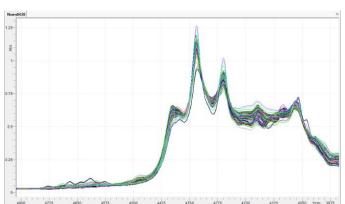
FT-NIR

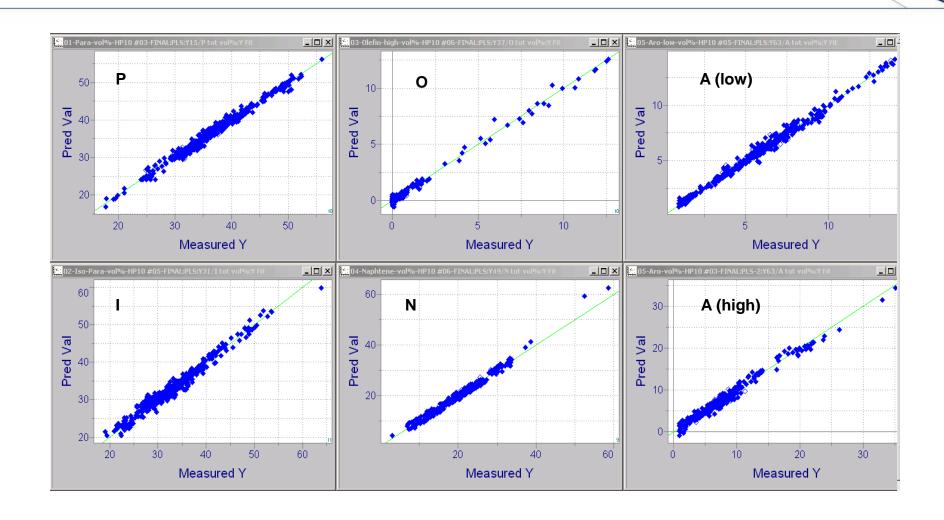

- No separation of sample
- Fast measurement 1 minute for all properties
- Flexible measurement, PIONA, T05, T95, RVP, Density
- Very low maintenance
- Low cost of ownership
- Requires calibration model based on lab test data
- Requires routine validation, but but no calibration standards

PGC

- Uses column to physically separate all chemical components
- Long cycle time (up to 45 minutes)
- Difficult application for PIONA and cannot directly measure distillation or density
- Maintenance intensive
- Consumables requirement
- Requires routine calibration but no modelling

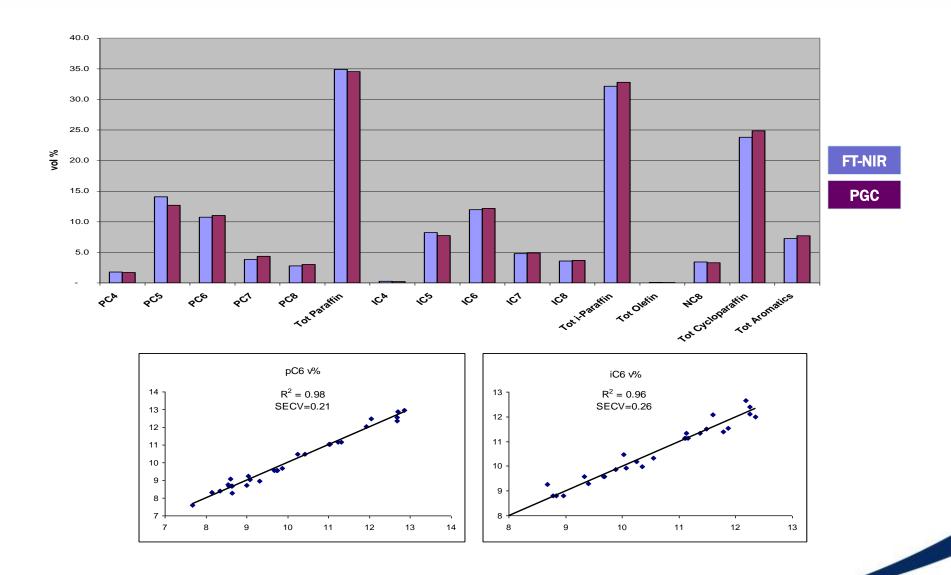

Calibration workflow and modeling


n-paraffins in naphtha

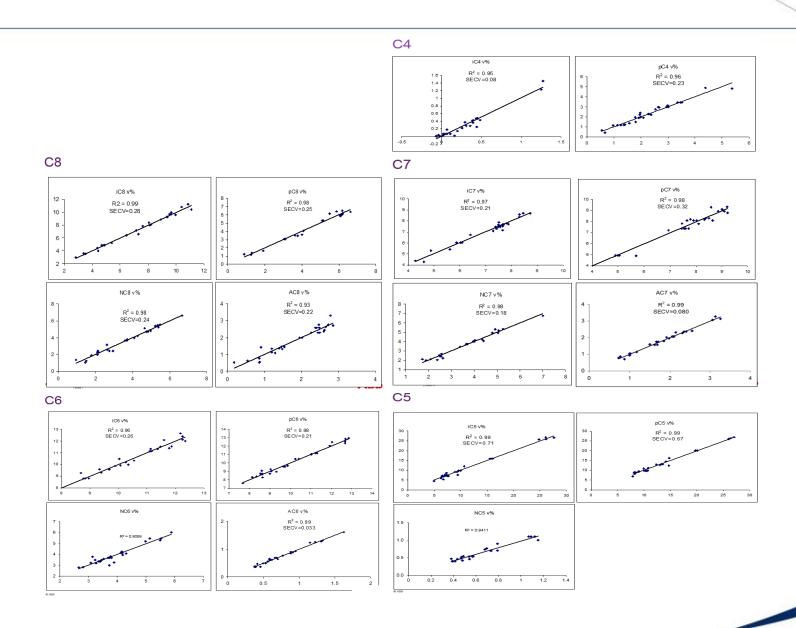

Quantitative Model Statistics

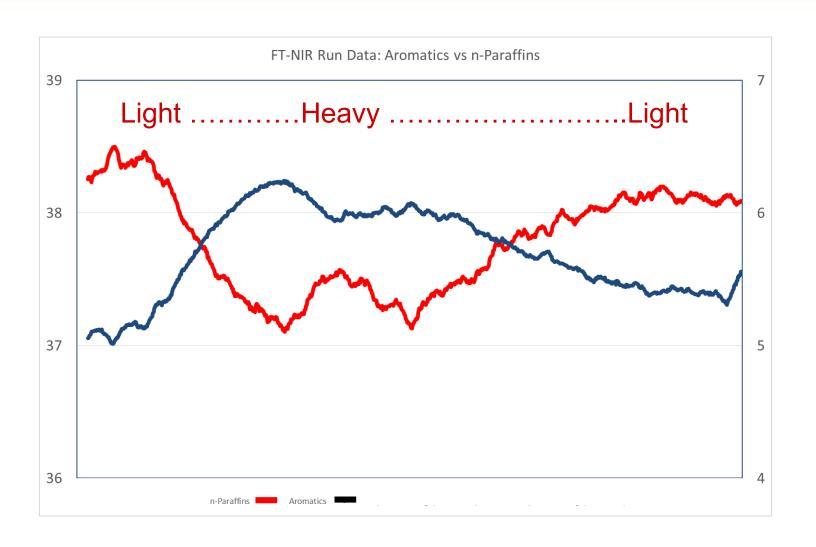
R	0.98
R2	0.97
SECV	0.97
RMSECV	0.97
Mean	34.93
Variance	30.46

FT-NIR calibration models for PIONA%


Typical FT-NIR model performances

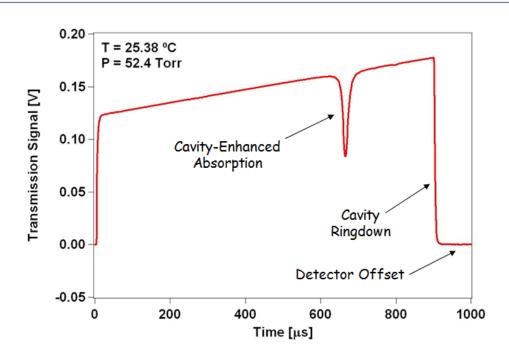
Example Naphtha Feed Calibration Data								
Property	FTIR R	FTIR r	Range vol%	Property	FTIR R	FTIR r	Range degC	
P%	0.74	0.14	18 - 53	IBP	2.1	0.26	21 - 105	
1%	0.98	0.11	20 - 55	T10	1.2	0.17	35 - 81	
O%(hi)	0.17	0.03	0 - 12	T30	1.7	0.16	44 - 93	
O%(lo)	0.08	0.03	0 - 1.6	T50	2.4	0.2	50 - 125	
N%	0.83	0.13	8 - 40	T70	3.3	0.31	54 - 143	
A%(lo)	0.26	0.08	1 - 15	T90	4.9	0.32	67 - 165	
A%(hi)	0.57	0.08	0 - 35	T95	7.7	0.48	69 - 185	
C4 Total	0.17	0.09	1 - 6	FBP	10.9	0.73	76 - 225	


Is C-number detail feasible?


C-number breakdown for naphtha

Feed transitions

Off-Axis Integrated Cavity Output Spectroscopy (ICOS)



- Small portion of laser power transmits <u>through</u> the front mirror
- Optical cavity provides an effective pathlength of 1 10 kilometers
 - Allows for detection of very low concentrations → ppb-level sensitivity
- Off-Axis prevents optical interference within the cavity and feedback to laser from mirrors
- Very robust exact alignment, gas pressure, and gas temperature are not critical
 - Significant improvement over multipass cells where precise alignment is critical
- Mirrors can be cleaned in the field by minimally-trained personnel in < 20 minutes

Off-Axis ICOS: Measured Data

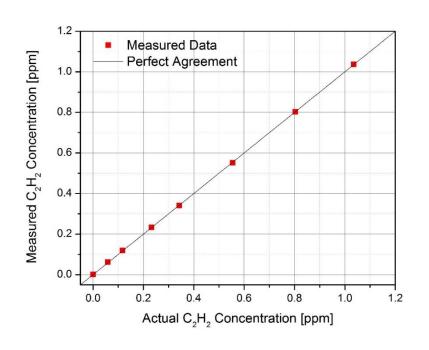
- Measure baseline, absorption, ringdown, detector offset, T and P every sweep
- Operate at low pressure to narrow lineshapes and improve selectivity
- Scan laser at 100–1000 Hz to provide <u>complete</u> measurement every 1–10 ms
- User-selectable data rate allows for averaging to improve precision
- Large linear dynamic range (10,000:1) effective pathlength decreases with absorption increase

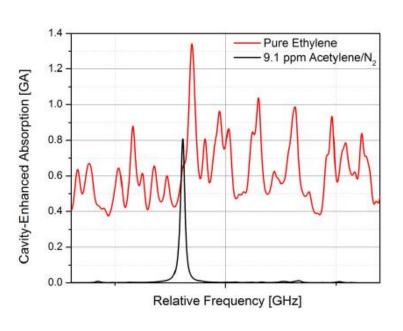
Refinery Process Units Naphtha Steam Cracker – Olefins Unit

Ethylene purity (steam cracker product) analyzer configurations

Analyzers	# Laser	C ₂ H ₂ (ppm)	NH ₃ (ppm)
C ₂ H ₂	1	0.002-20	
C ₂ H ₂ /NH ₃	1	0.002-20	0.01-100

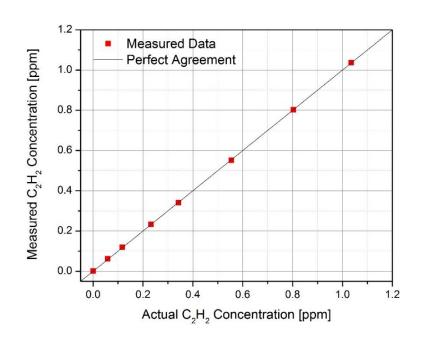
LGR-ICOS 950 Series Steam Cracker Product Ethylene

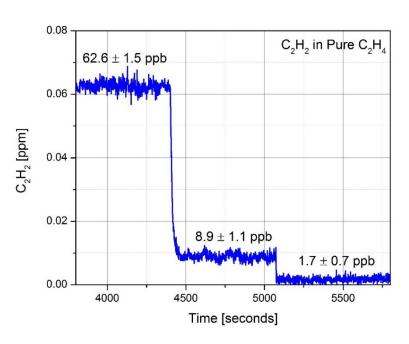

Process	What?	Why?	Analyzer		nalyzer
DOWNSTREAM Steam Cracking Olefins Unit	Steam Cracker Ethylene – Product Purity C ₂ H ₂ 2 ppb – 20 ppm NH ₃ 10 ppb – 100 ppm	Ethylene / Propylene purity to meet critical product specification	Add CO ₂ , H ₂	Catalytic Reactor Reactor	


Minimize acetylene contamination

- Must contain < 10 ppmv acetylene
- Actively control hydrogenation
- Divert stream if a plant upset occurs
 - Protect stored product
 - Protect catalysts

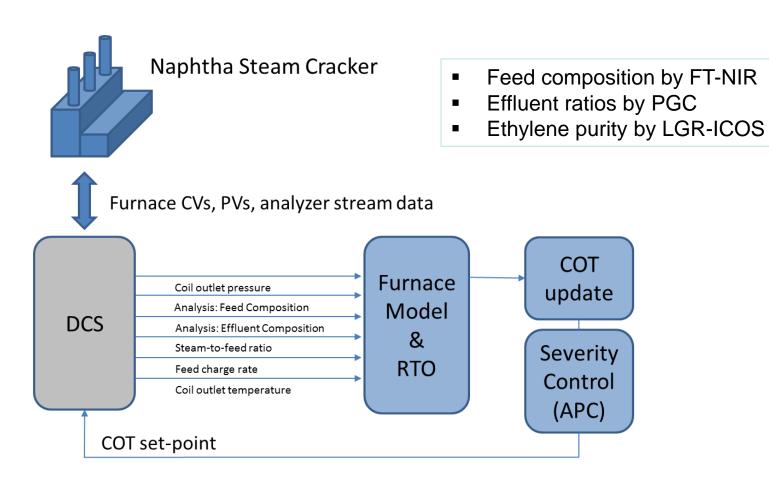
Contaminants in Ethylene – Sample Data





- Measure C₂H₂ with a low LDL (< 20 ppb), high precision (< 2 ppb, 1s, 1sec), and good accuracy
- Simultaneously measure NH₃
- Used for both end-product verification as well as process control

Contaminants in Ethylene – Sample Data



- Measure C₂H₂ with a low LDL (< 20 ppb), high precision (< 2 ppb, 1s, 1sec), and good accuracy
- Simultaneously measure NH₃
- Used for both end-product verification as well as process control

Feed analysis for furnace RTO

Thank you

jesper.yip@sg.abb.com mike.b.simpson@gb.abb.com